狠狠综合久久AV一区二区三区,欧美变态口味重另类在线视频,国产AⅤ激情无码久久久无码,精产国品一二三产品区别在线

歡迎來到冀群(江蘇)儀器有限公司網站!
咨詢熱線

13236572657

當前位置:首頁  >  技術文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應用

英國 Labplant 噴霧干燥儀在奶粉中的應用

更新時間:2021-11-30  |  點擊率:1669

英國 Labplant 噴霧干燥儀在奶粉中的應用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


欧美在线视频| 亚洲精品久久久久久久久久久 | AV片在线观看| 免费无码专区毛片高潮喷水| 真人无遮挡猛进猛出视频| 性一交一乱一色一视频| 国产一区二区三精品久久久无广告| 英语老师解开裙子坐我腿中间 | 婷婷丁香五月天在线播放| 国产一区二区三区在线电影| 18禁喷水流白浆自慰视噜噜噜| 久久久久久久久波多野高潮| 一本一道AV无码中文字幕﹣百度| 国产在线观看国偷精品产拍| 99蜜桃臀久久久欧美精品网站| 亚洲爆乳精品无码一区二区三区| 被三个男人躁一夜好爽小说| 大白屁股缝里浓黑的毛| 娇妻第一次尝试交换| 97精品国产97久久久久久免费| 无码精品a∨在线观看十八禁| 亚洲国产精品无码久久九九大片| 艳鉧动漫1~6无删减版| 校花玉腿缠腰娇喘迎合| JZZIJZZIJ亚洲乱熟无码| 久久亚洲美女精品国产精品| bl肉yin荡np公厕肉便| 国产无遮挡无码视频免费软件| 国产最新精品sm调教视频| 换着玩人妻hd中文字幕| 欧美性猛交XXXX黑人猛交| 天天做天天爱天天爽综合网| 国产对白叫床清晰在线播放| 国产av免费观看| 被男朋友摸下面流了很多血| 国产精品国产三级国产专区53 | 男男肠道灌水失禁play| 蜜桃狠狠色伊人亚洲综合网站| 国产成人精品三上悠亚久久| 国产超碰人人模人人爽人人添| 国产69精品久久久久777|